ONE HARD PROBLEM

Multivalued Dimensions
About Joy and Kimball Group

- Kimball Group founded by Ralph Kimball
- Tiny DW/BI consultancy
 - Consulting (requirements, design, and architecture)
 - Writing
 - Teaching and speaking
- Kimball Group retires at end of 2015 (tick tock)
 - Content will remain available
 - Website plus upcoming Kimball Reader, Second Edition
- Joy
 - Biz user background
 - A ridiculously long time in DW / BI (25 years now)
 - Consultant, stint on SQL Server product team, has done some actual work too
Acknowledgments

Course materials adapted from...

- The Data Warehouse Toolkit, 3rd Ed.
 - R. Kimball, M. Ross (Wiley 2011)

- The Data Warehouse Lifecycle Toolkit, 2nd Ed.

- The Microsoft Data Warehouse Toolkit, 2nd Edition
 - J. Mundy, W. Thornthwaite (Wiley 2011)

- Kimball University
 - Data Warehouse Lifecycle in Depth course materials
 - Design Tips and Intelligent Enterprise articles at www.KimballGroup.com
Agenda: One Hard Problem

Introduction
- Dimensional basics
- Multivalued or many-to-many dimensions

Introducing multivalued dimensions
- Examples of multivalued problems

Alternative design approaches

Presenting and using the multivalued dimension
Basic Dimensional Modeling Concepts
Kimball Method design precepts

- Design for the enterprise
 - The greatest value comes from combining information from subject areas that don’t usually get analyzed together

- Design for flexibility
 - Very detailed data
 - Hook together via Conformed Dimensions

- Design to enable ad hoc use
 - Even if you don’t offer widespread ad hoc access on Day 1
What is a dimensional model (star schema)

- Single fact table of measurements, surrounded by multiple descriptive dimension tables
Dimensional: Why and how

- Primary design goal: Support analytic queries
 - Usable
 - Query performance

- Key terms
 - Facts = measures of business events
 - Dimensions = entities that participate in business events

- Basic approach:
 - Denormalize dimensions for usability
 - Normalize facts for performance
Terminology: Dimensions

- Characteristics of a subject/object
 - Who, what, when, where, why, how
 - Product, Date, Patient, Facility ...

- Each row is an occurrence
 - One row per product, day, patient, ...

- Dimension attributes (columns):
 - Report labels and query constraints
 - “By” words and “where” clauses
 - Verbose descriptive attributes, in addition to codes
 - Hierarchical relationships

<table>
<thead>
<tr>
<th>PRODUCT KEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Desc.</td>
</tr>
<tr>
<td>SKU #</td>
</tr>
<tr>
<td>Size</td>
</tr>
<tr>
<td>Brand Desc.</td>
</tr>
<tr>
<td>Class Desc.</td>
</tr>
</tbody>
</table>
Terminology: Facts

Metrics resulting from business process or event
- NOT mapped to a specific report
- Facts are usually numeric and additive

Granularity/grain
- Identifies the level of detail
- One row per sale, one row per bank account, one row per claim, ...
- Atomic grain is most flexible

Three main fact table types
- Transaction; Snapshot; Accumulating

Sales Facts

<table>
<thead>
<tr>
<th>DATE KEY</th>
<th>PRODUCT KEY</th>
<th>STORE KEY</th>
<th>PROMOTION KEY</th>
<th>Other dim keys…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales Amount</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Terminology: Dimensional model
(or Star Schema)

- Fact table per business process / event, plus relevant dimensions

- Benefits:
 - Easier to understand
 - Better performance
 - Pre-joined
 - Star join optimization
 - Extensible to handle change
Terminology: Dimension Table

Surrogate Keys

- Surrogate keys are substitute keys
 - Integer, non-meaningful, sequence numbers
 - Surrogate keys join fact and dimension tables
 - Treat business keys as attributes (aka natural keys)

Benefits

- Isolate DW/BI system from operational changes
- Improve performance (over character and 2-col keys)
- Handle “Not applicable”, “Date TBD”, …
- Allow integration of multiple sources
- Enable tracking of dimension attribute changes
Introducing Multivalued Dimensions
Introducing multivalued dimensions

- Each row in the fact table corresponds to multiple dimension rows
 - Customer-supplied “sales reasons”: Customer tells us why they bought each item on their order
 - Price, Color, Size, Recommendation, …
 - Web form allows multiple reasons

- Challenges:
 - Need to allow ad hoc use (must be easy)
 - Need good query performance for analytic queries
Multivalued Sales Reason -- Kind of what we want
Multivalued dims: Bridge table solution
Sales Reason Dimension

<table>
<thead>
<tr>
<th>Sales Reason</th>
<th>Approx 20 reasons (rows)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales Reason Key</td>
<td>DW Surrogate Key</td>
</tr>
<tr>
<td>Sales Reason Code</td>
<td>Code from source system</td>
</tr>
<tr>
<td>Sales Reason Descr</td>
<td>Label</td>
</tr>
<tr>
<td>Sales Reason Group</td>
<td>Often there’s a grouping</td>
</tr>
</tbody>
</table>

- Absolutely vanilla – nothing unusual about this dimension

- Design can support SCD-2, though in the current example (sales reasons) it probably wouldn’t
Sales Reason Group

<table>
<thead>
<tr>
<th>Sales Reason Group</th>
<th><= 2^20 = 1 Million (-ish)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK</td>
<td>Sales Reason Group Key</td>
</tr>
<tr>
<td></td>
<td>DW Surrogate Key</td>
</tr>
</tbody>
</table>

- One row for each theoretical (or observed) combinations of sales reasons. Max is 2^20 in this specific example.

- The practical maximum count of rows in the bridge table is the # of rows in the fact table.

- Issue affects ETL, not the data model.
Sales Reason Group Membership

Bridge Table

<table>
<thead>
<tr>
<th>Sales Reason Group Membership</th>
<th>< 10 Million (-ish)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK, FK</td>
<td>Sales Reason Group Key</td>
</tr>
<tr>
<td>PK, FK</td>
<td>Sales Reason Key</td>
</tr>
<tr>
<td>Reason Group Size</td>
<td>How many reasons are in this reason group?</td>
</tr>
<tr>
<td>Allocation</td>
<td>Often 1/[Reason Group Size]. Or maybe you can get a rule from the business.</td>
</tr>
</tbody>
</table>

- If a customer chose 3 reasons, the group membership table has 3 rows for that sales reason group.

- This table is significantly larger than Sales Reason Group (which has one row for each grouping).
Multivalued Dimension Challenges

Query performance
- Bridge table is big. As big as — or bigger than — the fact table.
- Always make it as small as possible (ETL section)
- Combining the dimension (eg Sales Reason) with bridge table doesn’t help much if at all.
 - Eliminate a join
 - List of value queries go against a huge table rather than a tiny table.

Usability: Double counting
- Consider an aggregate query of Sales Amt by Sales Reason
- There is no great solution to this problem — user education is required
Avoiding the Bridge Table

- Identify a “primary reason”
- Pivot out the sales reasons
- Add a concatenated column
- Change the grain of the fact table
Identify Rule for Primary Reason

- Business users provide logic
- Or change website so we collect from customers
- Often a supplement to the bridge table approach
- Lots of queries can skip the multivalued dim
Pivot out the Sales Reasons

<table>
<thead>
<tr>
<th>Sales Reason Choices</th>
<th><= 2^20 = 1 Million (-ish)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK</td>
<td>Sales Reason Choices Key</td>
</tr>
<tr>
<td>Is On Sale</td>
<td>Yes / no or decode eg “Chose sale”</td>
</tr>
<tr>
<td>Is Price</td>
<td>Ditto</td>
</tr>
<tr>
<td>Is Recommendation</td>
<td>Ditto</td>
</tr>
<tr>
<td>Is …. (other 17 reasons)</td>
<td>Ditto x 17</td>
</tr>
</tbody>
</table>

- One row for each theoretical (or observed) combinations of sales reasons. Max is 2^20 in this specific example.

- Clearly, populate only with observed combinations. This table will be <= size of fact table (usually considerably less).
Pivot out the Sales Reasons

- Sales Reason Choices table will be significantly smaller than bridge table
- But it’s still big
- Good choice for a relatively static form, multiple choice
- Only populate with observed sets of choices
- Not very resilient to change
 - What if the form is redesigned? More columns!!
Add a concatenated column

- On sale | Price

- Most appropriate for multi-valued attributes of a dimension
 - Rather than multi-valued dimension relationships as we’ve mostly been discussing

- Sometimes can supplement the “pivot” approach
Change the Grain of the Fact Table

- Child Protective Services schema (greatly simplified)
- Business process in the fact table focuses on reports of child abuse
- Fact table grain was one row per report of child abuse
- Potentially multiple:
 - Children per incident
 - Types of abuse per incident
 - Abusers
Change the Grain of the Fact Table

- Fact table grain: One row for each report of abuse against a child
 - Designers were too focused on the source system!
 - The children are clearly what’s important
- Types of abuse (some 30 types, multi-choice) – use the pivoting technique discussed previously
- Multiple abusers – use HoH + bridge table techniques

Result: Most queries do not need any bridge table (down from 3!)
Other Twists on Multivalued Relationships

- Many-to-many between dimensions
 - Account snapshot schema: Bank accounts to Customers (me, my husband, joint)
 - Higher Education: Students and their majors
 - If there are only a handful of possibilities, jam them into the dimension as Major1..Major3
 - Imperfect, awkward, but better than the bridge table!

- Does order count?
 - Medical diagnoses
Try to avoid the “correct” (bridge table) solution!

If you must build a bridge table, populate it only with observed groups, not all theoretically possible groups.
Presentation and Usability
Querying Directly from Relational

- Standard reports
- Developer joins the M2M table structures
- Can allocate sales to sales reason based on SR Group Membership
- Usually drop Sales Reason Group from query

Sales Orders fact

Customer

Due Date

Order Date

Sales Reason Group

Product

Promotion

SR Group Membership

Sales Reason

Observed groups

Observed groups x reasons

20 rows
Building OLAP Cubes with Multivalued Dimension

- Some “old fashioned” OLAP tools can consume the correct table structure
- Calculated measure to allocate facts greatly helps usability
- Scalability!
 - All queries of the multivalued dimension go through the (potentially very large) relationship bridge table
 - Minimize the size of the bridge table
 - Limits... always relative
Using multivalued dimensions in in-memory OLAP

- Tableau, Qlikview, Analysis Services Tabular, etc
- Highly problematic
 - In other words, can’t do it
- Recommend the workaround approaches for popular data visualization tools
Key Lessons for Multivalued Dimensions

➢ The intellectually correct design (bridge tables) is problematic:
 ▪ Query performance
 ▪ Usability (double-counting)
 ▪ Avoid “correct” design if possible

➢ Always coalesce / squish the bridge table
 ▪ Do it in ETL. Do it once. Do it right.

➢ Bridge table in relational is fine for predefined reports
 ▪ For ad hoc, effective use requires training, or old-fashioned OLAP
THANK YOU